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Using a non-local exchange kernel Xð~r, ~r0Þ defined earlier by March and Santamaria,
Hartree–Fock theory is shown to yield an exact relation for the kinetic energy density tð~rÞ.
This involves Xð~r, ~r0Þ and its low-order gradients with respect to ~r. Explicit limiting results then
emerge for t at large ~r. A two-level example applicable to either the Be atom or the diatomic
heteronuclear molecule LiH confirms the general relation between tð~rÞ and Xð~r, ~r0Þ presented
here.

Keywords: Inhomogeneous electron liquid; Hartree–Fock theory; Kinetic and
exchange properties

1. Introduction

It is of considerable interest for density functional theory (DFT) to relate the single-

particle kinetic energy density to the exchange energy counterpart in the ground state of

atoms and molecules. The exchange energy density has been usefully approximated by

adding a term involving density gradients to a local density approximation (LDA) but

orbital-free kinetic energy density theory is presently of much poorer quality.
Therefore, in the present article the authors have worked out from Hartree–Fock

(HF) theory for finite closed shell molecules and clusters, an expression for the kinetic

energy density in terms of a non-local exchange energy kernel introduced in the early

work of March and Santamaria [1,2]. An illustration of this relation between kinetic

and exchange contributions is then presented for two-level systems such as the Be atom

or LiH.
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Though the earliest form of DFT proposed by Thomas [3], Fermi [4] and Dirac [5],
now known as the LDA to current DFT, yielded explicit functionals for kinetic energy
density t½%� and exchange energy density "x[%], namely

tTFD½%� ¼ ckf%ð~rÞg
5=3: ck ¼

3h2

10m

3

8�

� �2=3

ð1Þ

and

�TFDx ½%� ¼ �cxf%ð~rÞg
4=3: cx ¼

3

4
e2

3

�

� �1=3

; ð2Þ

it is the latter that has proved much more useful for recent quantitative versions
of DFT, when corrected for density gradients [6,7]. Therefore, in the Kohn–Sham
procedure [8] the single-particle kinetic energy problem is bypassed by returning,
as in Hartree self-consistent field theory but without self-interaction correction,
to one-electron Schrödinger equations. Nevertheless, a number of workers in DFT
continue to study the orbital-free approximations to the single-particle kinetic energy.
The present study is a contribution to the latter area, and directly connects the exchange
and kinetic contributions. However, to do so explicitly, one can appeal to restricted
HF theory for closed shell systems. This theory is attractive as a result of Möller and
Plesset confirms the high quality of its ground-state-electron density %ð~rÞ, the central
tool of DFT.

2. Non-local generalizations of kinetic and exchange energy densities

In HF theory, the natural starting point for the direct calculation of kinetic energy
density, tð~rÞ say, is the idempotent Dirac density matrix �ð~r, ~r0Þ defined by

�ð~r, ~r0Þ ¼
X

occupied i

�ið~rÞ�
�
i ð~r

0Þ, ð3Þ

where �ið~rÞ denotes the ith HF orbital. Defining the quantity Fð~r, ~r0Þ by

Fð~r, ~r0Þ ¼ �ð~r, ~r0Þ2, ð4Þ

Dawson and March [9] pointed out that the kinetic energy density tð~rÞ can be written as

tð~rÞ �
�h2

8m

Z
ðr~rF Þ

2

F
d~r0, ð5Þ

which is somewhat reminiscent of the ‘inhomogeneity’ kinetic energy density proposed
by von Weizsäcker [10], namely

twð~rÞ ¼
�h2

8m

r~r%ð~rÞ
� �2

%ð~rÞ
; ð6Þ

to which quantity referred again later in equation (22).
Having written tð~rÞ in terms of F¼ �2 in equation (5), one can similarly express the

exchange energy density �xð~rÞ in HF theory. To do so, the Dirac [5] total exchange
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energy Ex in terms of �ð~r, ~r0Þ is the natural starting point, namely

Ex ¼ �
e2

4

Z
�ð~r, ~r0Þ2

j~r� ~r0j
d~r d~r0: ð7Þ

Though it is not unique, the definition of the exchange energy density �xð~rÞ
which is adopted throughout this study follows, naturally enough, from equation (7) as

Ex ¼

Z
�xð~rÞd~r ð8Þ

where

�xð~rÞ ¼ �
e2

4

Z
�ð~r, ~r0Þ2

j~r� ~r0j
d �r0

¼ �
e2

4

Z
Fð~r, ~r0Þ

j~r� ~r0j
d~r0,

ð9Þ

the latter step utilizing the definition (4).
March and Santamaria [1,2] proposed to define non-local kinetic and

exchange energy kernels which they denoted respectively by Kð~r, ~r0Þ and Xð~r, ~r0Þ
such that

�ð~rÞ ¼

Z
Kð~r, ~r0Þd~r0, ð10Þ

where �ð~rÞ differs from tð~rÞ by an N-dependent-constant only and

�xð~rÞ ¼

Z
Xð~r, ~r0Þd~r0: ð11Þ

Then the simplest explicit forms for K and X, which the authors adopt as definitions

below, follow respectively from equations (5) and (9) as

Kð~r, ~r0Þ ¼
�h2

8m

ðr~rF Þ
2

F
ð12Þ

and

Xð~r, ~r0Þ ¼ �
e2

4

Fð~r, ~r0Þ

j~r� ~r0j
: ð13Þ

Given equations (12) and (13), it is a straightforward matter by using

Fð~r, ~r0Þ ¼ �
4

e2

� �
Xð~r, ~r0Þj~r� ~r0j ð14Þ

in equation (12), to write the kinetic energy non-local kernel Kð~r, ~r0Þ solely in terms of

its exchange energy counterpart Xð~r, ~r0Þ. Then after some straightforward manipulation,

the authors obtain, now using atomic units in what follows,

Kð~r, ~r0Þ ¼ �
1

2
j~r� ~r0j

ðr~rXÞ
2

X
� r~rXr~rj~r� ~r0j �

X

2j~r� ~r0j
ðr~rj~r� ~r0jÞ2: ð15Þ
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Integrating equation (15) with respect to ~r0 we find the HF (normalized) kinetic energy
density �ð~rÞ in terms of the non-local exchange kernel Xð~r, ~r0Þ as

�ð~rÞ ¼

Z
Kð~r, ~r0Þd~r0 ¼ �

1

2

Z
j~r� ~r0j

ðr~rXÞ
2

X
d~r0 �

Z
r~rXr~rj~r� ~r0jd~r0

�
1

2

Z
ðr~rj~r� ~r0jÞ2

j~r� ~r0j
Xð~r, ~r0Þd~r0: ð16Þ

In the penultimate section 4, it will be shown that the idempotency of the Dirac
density matrix �ð~r, ~r0Þ can be utilized to rewrite the second term appearing in
equation (16), a Laplacian term r2

~r
%ð~rÞ is then being introduced into the kinetic energy

density.
Section 3 applies equation (16), valid for an arbitrary number of doubly filled

spin-compensated levels in HF theory, to a two-level system such as the Be atom or
the diatomic molecule LiH.

3. Calculation of kinetic energy density for a two-level system: e.g. LiH or Be atom

To illustrate the utility of equation (16), let one calculate t(r) for the Be atom.
Then, using the 1s and 2s wave functions in terms of the density amplitude %1/2(r) and
the phase �(r) one have [9]

�1s ¼
%

2

� �1=2
cos� ð17Þ

and

�2s ¼
%

2

� �1=2
sin� ð18Þ

Evidently, the Dirac density matrix is given by substituting these wave functions into
equation (3), when the known result

�ðr; r0Þ ¼ %1=2ðrÞ%1=2ðr0Þ cos �ðrÞ ��ðr0Þð Þ ð19Þ

is obtained or from equation (4):

Fðr; r0Þ ¼ %ðrÞ%ðr0Þ cos2 �ðrÞ ��ðr0Þð Þ: ð20Þ

Therefore, substituting equation (20) into equation (13), one can find the non-local
exchange kernel to be

Xð~r; ~r0Þ ¼ �
e2

4

%ðrÞ%ðr0Þ cos2 �ðrÞ ��ðr0Þð Þ

j~r� ~r0j
: ð21Þ

Inserting equation (21) into equation (16) one must find the result already in the
literature that the total kinetic energy T is given by

T ¼
�h2

8m

Z
ðr%Þ2

%
d~rþ

1

2

Z
%ðr�Þ

2d~r: ð22Þ

Though the most direct way, still, of reaching equation (22) is from
ð1=2Þð@2=@~r0@~rÞ�ð~r, ~r0Þj~r0¼~r using equation (19), from equation (16) and after allowing
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for the N-dependent normalization constant relating �ð~rÞ and tð~rÞ plus idempotency and
the pendulum equation (9), the two-level result (22) must emerge.

4. Further relations resulting from idempotency of

HF Dirac density matrix cð~r, ~r0Þ defined in equation (3)

Already, in reaching equations (5) and (16), Dawson and March [9] had employed
the idempotency of the Dirac density matrix defined in equation (3). For doubly
occupied levels considered throughout this article, this idempotency condition readsZ

�ð~r, ~r00Þ

2

�ð~r00, ~r0Þ

2
d~r00 ¼

�ð~r, ~r0Þ

2
: ð23Þ

Putting ~r0 ¼ ~r, and using the definition (4) readily yieldsZ
Fð~r; ~r0Þd~r0 ¼ 2%ð~rÞ: ð24Þ

Inserting equation (14) into equation (24),
Z

j~r� ~r0jXð~r; ~r0Þd~r0 ¼ �
e2

2
%ð~rÞ: ð25Þ

Taking the gradient with respect to ~r of equation (25) yields
Z

r~rj~r� ~r0jXð~r; ~r0Þd~r0 þ

Z
j~r� ~r0jr~rXð~r; ~r

0Þd~r0 ¼ �
e2

2
r~r%ð~rÞ: ð26Þ

A further gradient operation on equation (26) then leads to the resultZ
r2

~r j~r� ~r0jXð~r; ~r0Þd~r0 þ 2

Z
r�rj~r� ~r0jr~rXð~r; ~r

0Þd~r0

þ

Z
j~r� ~r0jr2

~r Xð~r; ~r
0Þd~r0 ¼ �

e2

2
r2

~r%ð~rÞ: ð27Þ

This identity (27) can be used to remove the scalar product term r~rXr~rj~r� ~r0j from
equation (16), which may be helpful in subsequent practical applications.

5. Summary

Equation (16), when combined with equation (11), sums up the main achievement of
this study. The kinetic energy density �ð~rÞ in equation (16) is determined solely by the
exchange energy kernel Xð~r, ~r0Þ, which in turn is related to the exchange energy density
�xð~rÞ by equation (11). The relation between tð~rÞ and the exchange kernel Xð~r, ~r0Þ is
fundamentally non-local, in contrast to that in the Thomas–Fermi–Dirac statistical
theory valid for large numbers of electrons N, the essential functional content of which
has been displayed in equations (1) and (2). Naturally, one can rewrite equations (1)
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and (2) through the elementary local relation between kinetic energy density tð~rÞ its
exchange counterpart �xð~rÞ as

tTFDð~rÞ ¼ const j�TFDx ð~rÞj
� �5=4

: ð28Þ

this relation (28) is valid only in LDA and must be replaced in HF theory by
equation (16). This must then lead to the correct two-level result (22), but the
authors reiterate that the relation (16) between �ð~rÞ and the non-local exchange
kernel Xð~r, ~r0Þ is valid for an arbitrary number of spin-compensated occupied levels.
Finally, in the appendix, the asymptotic behaviour of �ð~rÞ large r in equation (16)
is discussed.
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[10] C.F. von Weizsäcker. Zeits für Physik, 96, 431 (1935).

Appendix: asymptotic large ~r behaviour of the kinetic energy density in equation (16)

As sufficiently large ~r equation (16) can be simplified considerably. It reads then

lim
~r!1

�ð~rÞ ¼ �
1

2
r

Z
ðr~rXð~r, ~r

0ÞÞ
2

Xð~r, ~r0Þ
d~r0 �

1

2r

Z
Xð~r, ~r0Þd~r0

�

Z
r~rj~r� ~r0j r~rXð~r, ~r

0Þd~r0 ðA1Þ
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The term �ð1=2rÞ
R
Xð~r, ~r0Þd~r0, using equation (11) becomes simply �ð1=2rÞ�xð~rÞ and

therefore in this asymptotic regime depends only on �xð~rÞ rather than on the non-local

kernel Xð~r, ~r0Þ. To discuss the final term in equation (A1) as r ! 1, one can employ

equation (27) which comes from the idempotency of the Dirac density matrix. The

result is readily found to be expressible solely in terms of the Laplacian r2
r%ð~rÞ already

appearing in equation (27), again the exchange energy density �xð~rÞ from the first term

in that equation, while the final term on the LHS of equation (27) involves r2�xð~rÞ times

r at sufficiently large r. The authors anticipate that the first term on the RHS

of equation (A1) will dominate �ð~rÞ at sufficiently large ~r and will be of Weizsäcker’s

form. However, the first term can be written asymptotically in this limit as

�ðr=4Þððr~r�xð~rÞÞ
2=�xð~rÞÞ: that is in terms of �x½~r� and its gradient.
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